MATH 2050 - Continuous functions on intervals
(Reference: Bartle §5.3)
A closed d bold internal
Q: What can we say about cts fan $f:[a, b] \rightarrow \mathbb{R}$?
s.t. $|f(x)-f(c)|<\varepsilon$ when $|x-c|<\delta, x \in[a, b]$

Recall: f cts at $c \Rightarrow f$ is "locally bod" near c
Boundedness Thu: Any cts $f:[a, b] \rightarrow \mathbb{R}$ is bad (globally on $[a, b]$) ie. $\exists M>0$ st $|f(x)| \leqslant M \quad \forall x \in[a, b]$.

Proof: Argue by contradiction. Suppose f is NOT bod on $[a, b]$.

$$
\begin{equation*}
\Rightarrow \forall n \in \mathbb{N}, \exists x_{n} \in[a, b] \text { st }\left|f\left(x_{n}\right)\right|>n \tag{n}
\end{equation*}
$$

we obtain a seq. $\left(x_{n}\right)$ in $[a, b]$, hence is bad.
By Bolzano-Weierstrass Thu, \exists convergent subseq. $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ say $\lim _{k \rightarrow \infty}\left(x_{n_{k}}\right)=: x_{*}$
Now. $a \leq x_{n_{k}} \leq b \quad \forall k \in \mathbb{N} \underset{\text { thee }}{\operatorname{limat}} a \leq \lim \left(x_{n_{k}}\right) \leq b$ ie $\quad x_{*} \in[a, b]$.

$$
\lim _{x \rightarrow x_{k}} f(x)=f\left(x_{k}\right)
$$

By continuity of f at x_{k}, and seq conteria. " $\lim _{x \rightarrow x_{k}} f(x)=\lim _{k \rightarrow \infty}\left(f\left(x_{n_{k}}\right)\right.$ "

$$
\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f\left(\lim _{k \rightarrow \infty} x_{n_{k}}\right)=f\left(x_{k}\right)
$$

So. $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{k}\right)$ as $k \rightarrow \infty \Rightarrow\left(f\left(x_{n_{k}}\right)\right)$ is bod.
However. $\left|f\left(x_{n_{k}}\right)\right|>n_{k} \geqslant k \quad \forall k \in \mathbb{N} \Rightarrow\left(f\left(x_{n_{k}}\right)\right)$ is unbid.

Remark: All assumptions are required in the theorem.
(1) unbid interval $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x):=x
$$

(2) non-closed internal
$f:(0,1] \rightarrow \mathbb{R}$

$$
f(x)=\frac{1}{x}
$$

(3) not continuity

$$
f:[0,1] \rightarrow \mathbb{R}
$$

$$
f(x)=\left\{\begin{array}{cc}
1 / x, & \text { if } x \neq 0 \\
1, & \text { if } x=0 .
\end{array}\right.
$$

f is Not cts at

By Boundedness Theorem, \exists exist in \mathbb{R}

$$
\begin{aligned}
M & =\sup \{f(x) \mid x \in[a, b]\} \\
m & =\inf \{f(x) \mid x \in[a, b]\}
\end{aligned}
$$

Extreme Value Thm: A cts $f:[a, b] \rightarrow \mathbb{R}$ always achieve its maximum and minimum i.i.e.
$\exists x^{*} \in[a, b]$ st $f\left(x^{*}\right)=M:=\sup \{f(x) \mid x \in[a, b]\}$
in not rec unique

$$
\exists x_{*}^{\text {in not rec unique }} \in[a, b] \text { st } f\left(x_{*}\right)=m:=\inf \{f(x) \mid x \in[a, b]\}
$$

Example: $f(x)=x^{2}, f:[-1,1] \rightarrow \mathbb{R}$

Caution: There can be mure than one maxima x^{*} and minima x_{n}.

Remarks: All assumptions are required.
(1) unbid interval $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)=\tanh x
$$

(2) non-closed interval
$f:(0,1) \rightarrow \mathbb{R}$ $f(x)=x$

(3) not cts
$f:[0,1] \rightarrow \mathbb{R}$
$f(x)=\left\{\begin{array}{lll}x & \text { if } & x \in(0,1) \\ 1 / 2 & \text { if } & x=0,1\end{array}\right.$

Proof: We only prove the existence of x^{*}.
Since $M:=\sup \{f(x) \mid x \in[a, b]\}, \forall \varepsilon>0, \exists x_{\varepsilon} \in[a, b]$ st.

$$
M-\varepsilon<f\left(x_{\varepsilon}\right)
$$

Take $\varepsilon=\frac{1}{n}$, then we obtain a sequence $\left(x_{n}\right) \subseteq[a, b]$ st.

$$
M-\frac{1}{n}<f\left(x_{n}\right) \leqslant M
$$

By Bolzano-weierstrass Thu, since $\left(x_{n}\right)$ is a bod Leg.
$\Rightarrow \exists$ convergent subseq. $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$, say $x_{\hat{*}}^{*}:=\lim \left(x_{n_{k}}\right)$ [$\hat{0}, b$]

Claim: $f\left(x^{*}\right)=M$
Pf: Since $M-\frac{1}{n_{k}}<f\left(x_{n_{k}}\right) \leqslant M$
for all $k \in \mathbb{N}$.
F. $f(x)=x^{2}$

take $k \rightarrow \infty$, by continuity of f at x^{*}

$$
M \leqslant f\left(x^{*}\right)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right) \leq M
$$

Three important theorems
about continuous
$f:[a, b] \rightarrow \mathbb{R}$$\left\{\begin{array}{l}\text { Boundedness Thu } \\ \text { Extreme Value Theorem } \\ \text { Intermediate Value Theorem }\end{array}\right.$
[compactness]
Extreme Value Thu: A cts $f:[a, b] \rightarrow \mathbb{R}$ always achieve its absolute maximum and minimum, ie.

$$
\begin{aligned}
& \exists x^{*} \in[a, b] \text { s.t. } f\left(x^{*}\right)=M:=\sup \{f(x) \mid x \in[a, b]\} \\
& \left.\exists\right|_{1} x_{*} \in[a, b] \text { s.t. } f\left(x_{*}\right)=m:=\inf \{f(x) \mid x \in[a, b]\}
\end{aligned}
$$

not rec. unique

Intermediate Value Theorem [connectedness]
Let $f:[a, b] \rightarrow \mathbb{R}$ be a cts function st $f(a)<f(b)$.
THEN, $\forall k \in(f(a), f(b)), \exists c \in[a, b]$ set.

$$
f(c)=k
$$

Picture:

Continuity is needed

Proof: It suffices to consider the case:
$f(a)<0<f(b)$ and $k=0$

$[\because$ The general case follows by whsidening $S(x):=f(x)-k$.

$$
S(c)=0 \Leftrightarrow f(c)=k
$$

Q: How to locate a "root" where

$$
f(c)=0 ?
$$

A: Method of bisection.

Define a rested seq of closed \& bold internals In as follows.
Take $I_{1}:=[a, b]=:\left[a_{1}, b_{1}\right]$
Consider the midpt. $\frac{a_{1}+b_{1}}{2}$ of I_{1}
Case 1: $f\left(\frac{a_{1}+b_{1}}{2}\right)<0 \Rightarrow$ take $I_{2}:=\left[a_{2}, b_{2}\right]=\left[\frac{a_{1}+b_{1}}{2}, b_{1}\right]$
Case 2: $f\left(\frac{a_{1}+b_{1}}{2}\right)>0 \Rightarrow$ take $I_{2}:=\left[a_{2}, b_{2}\right]=\left[a_{1}, \frac{a_{1}+b_{1}}{2}\right]$
Case 3: $f\left(\frac{a_{1}+b_{1}}{2}\right)=0 \Rightarrow$ DONE, take $c=\frac{a_{1}+b_{1}}{2}$.
Repeat this process for I_{2}.
Fither you locate a root (Case 3). or you obtain a seq. of closed \& bod intervals $I_{n}:=\left[a_{n}, b_{n}\right]$. Length (Inri)

$$
\text { st }\left\{\begin{array}{l}
I_{n+1} \subseteq I_{n} \quad \forall n \in \mathbb{N} \quad \text { rested } \\
f\left(a_{n}\right)<0<f\left(b_{n}\right) \quad \forall n \in \mathbb{N} .
\end{array}\right.
$$ $=\frac{1}{2} \operatorname{lengen}\left(I_{n}\right)$

By Nested Interval Property. $\bigcap_{n=1}^{\infty} I_{n}=\{c\}$

$$
\left(\because \operatorname{Length}\left(I_{n}\right) \rightarrow 0\right)
$$

Clain: $f(c)=0$.
Pf: Since $\lim \left(a_{n}\right)=\lim \left(b_{n}\right)=C$. Take $n \rightarrow \infty$ in (*), by contrinuity of f at c.

$$
f(c) \leqslant 0 \leqslant f(c) \text {, ie } f(c)=0
$$

