
 

MATH 2050 Continuous functions on intervals

Reference Bartle 5.3
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Proof We only prove the existence of 24
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Three important theorems
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its absolute maximum and minimum i e

I SEE a b s t f XX M sup fix I XE Caab

7 24C a b s t f xx m inf fix 1 X E Caab
I

hit nec Unique

Intermediate Value Theorem connectedness

Let f a b IR be a Cts function St fla Cf Cb

THEN V k E fca f b 7 C E Ca b Srt

f c K

Picture Continuity is needed
y fix

Y

r

Sta a



Proof It suffices to consider the case
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